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Abstract

A basis for a Banach space X is greedy if and only if the greedy algorithm provides, up to a constant
C depending only on X, the best m-term approximation for each element of the space. It is known that
the Haar (or good wavelet) basis is a greedy basis in Lp(0, 1) for 1 < p < ∞ [V.N. Temlyakov, The best
m-term approximation and greedy algorithms, Adv. in Comp. Math. 8 (1998) 249–265]. In this particular
example, unfortunately, the constant of greediness C = C(p) is strictly bigger than 1 unless p = 2. Our
goal is to investigate 1-greedy bases, i.e., bases for which the greedy algorithm provides the best m-term
approximation. We find a characterization of 1-greediness, study how 1-greedy bases relate to symmetric
bases, and show that 1-greediness does not imply 1-symmetry, answering thus two questions raised in [P.
Wojtaszczyk, Greedy Type Bases in Banach Spaces, Constructive Function Theory, Varna 2002, Darba,
Sofia, 2002, pp. 1–20].
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a (real) Banach space with a semi-normalized basis (en)
�
n=1 (� finite or infinite). For

each m = 1, 2, . . . , we let �m denote the collection of all elements of X which can be expressed
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as a linear combination of m elements of (en):

�m =
⎧⎨
⎩y =

∑
j∈B

�j ej : B ⊂ N, |B| = m, �j ’s scalars

⎫⎬
⎭ .

Let us note that the space �m is not linear: the sum of two elements from �m is generally not in
�m, it is in �2m. An approximation algorithm is a sequence of maps Tm : X → X, m ∈ N, so
that for each x ∈ X, Tm(x) ∈ �m. For x ∈ X, its best m-term approximation error (with respect
to the given basis) is

�m(x) = inf
y∈�m

‖x − y‖.

The fundamental question is how to construct an approximation algorithm which for every x ∈ X

and each m produces an element Tm(x) ∈ �m so that the error of the approximation of x by Tm(x)

be (uniformly) comparable with �m(x), i.e.

‖x − Tm(x)‖�C�m(x),

where C is an absolute constant.
The most obvious and in some sense natural attempt to get such an algorithm is to consider

the Greedy Algorithm, (Gm)
�
m=1, where for each x, Gm(x) is obtained by taking the largest m

coefficients in the series expansion of x. To be precise, if we let (e∗
n)

�
n=1 ⊂ X∗ denote the

biorthogonal functionals associated to (en)
�
n=1, for x ∈ X put

Gm(x) =
∑
j∈B

e∗
j (x)ej ,

where the set B ⊂ N is chosen in such a way that |B| = m and |e∗
j (x)|� |e∗

k (x)| whenever j ∈ B

and k /∈ B.
Let us note that it may happen that for some x and m the set B, hence the element Gm(x), is not

uniquely determined by the previous conditions. In such a case, we pick any of them. Besides,
the maps Gm are neither linear (even when the sets B are uniquely determined) nor continuous.

Following [1], given x ∈ X we define its greedy ordering as the map � : {1, 2, . . . , �} →
{1, 2, . . . , �} such that {j : e∗

j (x) �= 0} ⊂ �
(
{1, 2, . . . , �}

)
and so that if j < k then either

|e∗
�(j)(x)| > |e∗

�(k)(x)| or |e∗
�(j)(x)| = |e∗

�(k)(x)| and �(j) < �(k). With this notation, the mth
greedy approximation of x is now uniquely determined by

Gm(x) =
m∑

j=1

e∗
�(j)(x)e�(j).

Konyagin and Temlyakov [6] defined a basis to be C-greedy (C�1) if for all x ∈ X and m ∈ N,
we have

‖x − Gm(x)‖�C�m(x). (1)

The smallest such constant C is the greedy constant of (en).
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Note that if C = 1 in Eq. (1) then ‖x − Gm(x)‖ = �m(x) for all x ∈ X and m = 1, 2, . . . , so
the greedy algorithm gives the best m-term approximation for each x ∈ X.

They also defined a basis (en)
�
n=1 to be �-democratic (��1) if for any two finite subsets A, B

of N with |A| = |B| we have∥∥∥∥∥∑
k∈A

ek

∥∥∥∥∥ ��

∥∥∥∥∥∑
k∈B

ek

∥∥∥∥∥ ,

(the least such constant � is the democratic constant of (en)
�
n=1) and gave the following charac-

terization of greedy bases:

Theorem 1.1 (Konyagin and Temlyakov [6, Theorem 1]; cf. Wojtaszczyk [11, Theorem 1]). If
(en)

�
n=1 is a greedy basis with greedy constant �C, the (en) is unconditional with suppression

constant �C and democratic with democratic constant �C. Conversely, if (en) is uncondi-
tional with suppression constant Ks and �-democratic then (en) is greedy with greedy constant
�Ks + K3

s �.

We will remind the reader the notion of unconditional basis in the next Section. If we disregard
constants, Theorem 1.1 says that a basis is greedy if and only if it is unconditional and democratic.
In particular, Theorem 1.1 immediately yields that a 1-greedy basis has both suppression constant
and democratic constant equal to 1. However, this is not a characterization of bases with greedy
constant 1. In this paper we tackle the problem of finding a characterization for greedy bases with
greedy constant equal to 1.

In §2, we pay close attention to the unconditional constants of an unconditional basis in relation
to Theorem 1.1 and show that 1-symmetric bases are 1-greedy.

In §3, we introduce a weak symmetry condition for bases that 1-greedy bases enjoy, which we
called property (A), and characterize 1-greedy bases in terms of Property A and unconditionality.

§4 deals with the problem of renorming equivalently a given Banach space X with a greedy
(respectively unconditional or/and democratic) basis (en) in such a way that after renorming
we improve the greedy constant of (en) (respectively, its constant of unconditionality or/and its
democratic constant). We prove that for all ε > 0 we can extract a large “lacunary subbasis” of
the Haar system in Lp[0, 1] which is 1-unconditional and (1 + ε)-democratic.

From Theorem 1.1 it is immediate to see that greediness is a stepping stone from symmetry
to unconditionality. Motivated by finding out more about the converse path, in §5 we provide
examples (some of which are non-trivial) that distinguish between a variety of closely related
properties of bases in Banach spaces. In particular, we see that a 1-greedy basis need not be
1-symmetric.

Finally, in §6 we give a list of open problems that arise naturally from this article.
We use standard Banach space notation and terminology throughout (see e.g. [9,7]). For clarity,

however, we single out the following. |·| may denote (depending on the context) either the absolute
value of a real number or the cardinality of a finite set. The convex hull of a set S (i.e., the set
of all convex combinations of points of S) will be denoted by co(S). Given a sequence (xn)

�
n=1

in X, we say that (xn)
�
n=1 is semi-normalized (respectively, normalized) if there exists a constant

c > 0 so that 1/c�‖xn‖�c (respectively, ‖xn‖ = 1) for all n. The closed linear span of (xn)
�
n=1

is denoted by [xn]. c00 will denote the sequence space consisting of sequences with only finitely
many nonzero terms. Other concepts from the theory of bases will be introduced as needed.
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2. Preliminary results

To begin let us recall that a basis (en)
�
n=1 of a Banach space X is said to be K-unconditional

(K �1) if for any N ∈ N, whenever a1, . . . , aN , b1, . . . , bN are scalars satisfying |an|� |bn| for
n = 1, . . . , N , then the following inequality holds∥∥∥∥∥

N∑
n=1

anen

∥∥∥∥∥ �K

∥∥∥∥∥
N∑

n=1

bnen

∥∥∥∥∥ . (2)

The unconditional constant Ku of (en) is the least such constant K .
If (en)

�
n=1 is an unconditional basis of X and A is a subset of the integers then there is a bounded

linear projection PA from X onto [ek : k ∈ A] defined for each x =∑�
k=1 e∗

k (x)ek by

PA(x) =
∑
k∈A

e∗
k (x)ek.

{PA; A ⊂ N} are the natural projections associated to the unconditional basis (en), and the
quantity

Ks = sup
A

‖PA‖ < ∞

is called the suppression constant of the basis.
Let us observe that in general we have 1�Ks �Ku �2Ks (see, for instance, [7, p. 380]), but

there is a situation in which Ks plays the role of Ku in Eq. (2):

Proposition 2.1. Let (en)
�
n=1 be an unconditional basis for a Banach space X. Assume a1, . . . ,

aN , b1, . . . , bN are scalars so that |an|� |bn| for all 1�n�N and, moreover, sgn(an) = sgn(bn)

whenever anbn �= 0. Then∥∥∥∥∥
N∑

n=1

anen

∥∥∥∥∥ �Ks

∥∥∥∥∥
N∑

n=1

bnen

∥∥∥∥∥ .

Proof. Fix any N ∈ N and let a1, . . . , aN , b1, . . . , bN be scalars as in the hypothesis. Observe
that for each 1�n�N we have

an

bn

=
∫ an

bn

0
1 dt,

so that we can write

N∑
n=1

anen =
N∑

n=1

∫ 1

0
bn�(0,

an
bn

)(t) dt en =
∫ 1

0

(
N∑

n=1

bn�(0,
an
bn

)(t) dt en

)
dt.

Note that for each t ∈ (0, 1), the unconditionality of the basis yields∥∥∥∥∥
N∑

n=1

bn�(0,
an
bn

)(t)en

∥∥∥∥∥ �Ks

∥∥∥∥∥
N∑

n=1

bnen

∥∥∥∥∥ . (3)
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Then, combining the properties of the Bochner integral with Eq. (3), we obtain∥∥∥∥∥
N∑

n=1

anen

∥∥∥∥∥ �
∫ 1

0

∥∥∥∥∥
N∑

n=1

bn�(0,
an
bn

)(t)en

∥∥∥∥∥ dt �Ks

∥∥∥∥∥
N∑

n=1

bnen

∥∥∥∥∥ . �

A basis (en)
�
n=1 is said to be �-superdemocratic (��1) [6] if the inequality

∥∥∥∥∥∑
k∈P

�kek

∥∥∥∥∥ ��

∥∥∥∥∥∥
∑
k∈Q

�kek

∥∥∥∥∥∥
holds for any two finite sets of integers P and Q of the same cardinality, and any choices of signs
(�k)k∈P and (�k)k∈Q.

It is clear that if a basis (en)
�
n=1 is simultaneously K-unconditional and �-democratic then

it is �-superdemocratic with ��K2�.
Now we show a very simple fact that we will need later.

Proposition 2.2. Let X be a 2-dimensional Banach space with normalized basis (e1, e2). If
(e1, e2) is unconditional with Ks = 1 then (e1, e2) is 1-greedy.

Proof. We need only show that for each x ∈ X we have

‖x − G1(x)‖��1(x).

Put x = �e1 + �e2. Clearly we have

�1(x) = inf
s,t

{
‖(� − s)e1 + �e2‖, ‖�e1 + (� − t)e2‖

}
.

Without loss of generality we assume that |�|� |�|. Using the hypothesis we obtain,

‖x − G1(x)‖ = ‖�e2‖ =
∥∥∥P{2}

(
(� − s)e1 + �e2

)∥∥∥ �‖(� − s)e1 + �e2‖

and

‖x − G1(x)‖ = |�|� |�| = ‖�e1‖ =
∥∥∥P{1}

(
�e1 + (� − t)e2

)∥∥∥ �‖�e1 + (� − t)e2‖.

Thus, ‖x − G1(x)‖��1(x) and we are done. �

There are weaker forms of greediness. For any basis (en)
�
n=1, let

�̃m(x) = inf

{∥∥∥∥∥x −
∑
k∈A

e∗
k (x)ek

∥∥∥∥∥ : A ⊂ {1, 2, . . . , �}, |A|�m

}
. (4)

A basis (en)
�
n=1 is almost greedy [1] if there is a constant C so that for each x ∈ X and

m = 1, 2, . . . we have

‖x − Gm(x)‖�C�̃m(x).
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A basis (en)
�
n=1 is quasi-greedy [6] if for each x ∈ X the norm limit limm→∞ Gm(x) exists and

equals x. This is equivalent (see [10]) to the condition that for some constant C

sup
m

‖Gm(x)‖�C‖x‖.

Obviously,

�m(x)� �̃m(x)�
∥∥∥∥∥x −

m∑
k=1

e∗
k (x)ek

∥∥∥∥∥→ 0 as m → ∞.

The following result appeared in [11]:

Proposition 2.3 (cf. Wojtaszczyk [10, Proposition 7]). Let (en)
�
n=1 be an unconditional basis for

a Banach space X with Ks = 1. Then, for each x ∈ X and each m = 1, 2, . . . , there exists
B ⊂ N of cardinality m such that

�m(x) =
∥∥∥∥∥x −

∑
n∈B

e∗
n(x)en

∥∥∥∥∥ .

That is, if Ks = 1 then �m(x) = �̃m(x) and the infimum in Eq. (4) is attained. Therefore, we
obtain the following immediate consequence that we state for reference.

Proposition 2.4. Let (en)
�
n=1 be a basis of a Banach space X.

(i) If (en) is 1-greedy, then

‖x − Gm(x)‖ = �m(x) = min

{∥∥∥∥∥x −
∑
k∈A

e∗
k (x)ek

∥∥∥∥∥ : A ⊂ {1, 2, . . . , �}, |A| = m

}
.

(ii) If (en) is unconditional with Ks = 1 and

‖x − Gm(x)‖ = min

{∥∥∥∥∥x −
∑
k∈A

e∗
k (x)ek

∥∥∥∥∥ : A ⊂ {1, 2, . . . , �}, |A| = m

}
.

for each x ∈ X and every 1�m < �, then (en) is 1-greedy.

Let us recall that an unconditional basis (en)
�
n=1 of a Banach space X is symmetric if for any

permutation � of {1, 2, . . . , �}, the basis (e�(n))
�
n=1 is equivalent to (en)

�
n=1, i.e., there is a constant

C so that for any permutation � and any choice of scalars (ak) ∈ c00 we have

C−1

∥∥∥∥∥
�∑

n=1

anen

∥∥∥∥∥ �
∥∥∥∥∥

�∑
n=1

ane�(n)

∥∥∥∥∥ �C

∥∥∥∥∥
�∑

n=1

anen

∥∥∥∥∥ .

(en)
�
n=1 is K-symmetric if for all x =∑�

n=1 anen the inequality∥∥∥∥∥
�∑

n=1

�nane�(n)

∥∥∥∥∥ �K

∥∥∥∥∥
�∑

n=1

anen

∥∥∥∥∥
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holds for any sequence of signs (�n) and any permutation �. The least such constant K is called
the symmetric constant of (en)

�
n=1.

A 1-symmetric basis is, in particular, 1-unconditional and 1-democratic. Therefore, by Theo-
rem 1.1, a 1-symmetric basis is greedy with greedy constant �2. Actually, more can be said:

Theorem 2.5. If (en)
�
n=1 is 1-symmetric, then (en)

�
n=1 is 1-greedy.

Proof. Fix x = ∑�
n=1 e∗

n(x)en and 1�m < �. Let � be the greedy ordering for x and A =
{�(1), �(2), . . . , �(m)}. Thus, Gm(x) =∑n∈A e∗

n(x)en. We aim to show that

‖x − Gm(x)‖ = min

{∥∥∥∥∥x −
∑
n∈B

e∗
n(x)en

∥∥∥∥∥ : B ⊂ N, |B| = m

}
.

Given B ⊂ N of cardinality m, suppose A ∩ B = ∅. If we take any permutation 	 : N → N

such that 	(A) = B and 	(n) = n if n /∈ A ∪ B, using the 1-symmetry of the basis we have∥∥∥∥∥x −
∑
n∈B

e∗
n(x)en

∥∥∥∥∥ =
∥∥∥∥∥∑

n∈A

e∗
n(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥
=
∥∥∥∥∥∑

n∈A

e∗
n(x)e	(n) +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥
�
∥∥∥∥∥∑

n∈B

e∗
n(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥
=
∥∥∥∥∥x −

∑
n∈A

e∗
n(x)en

∥∥∥∥∥ .

Let us assume now that A ∩ B �= ∅. We pick a permutation 	 : N → N so that 	(A\B) = B\A
and 	(j) = j if j /∈ (A\B sup(B\A). Then, the 1-symmetry of the basis yields∥∥∥∥∥x −

∑
n∈B

e∗
n(x)en

∥∥∥∥∥ =
∥∥∥∥∥∥
∑

n∈A\B
e∗
n(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥∥
=
∥∥∥∥∥∥
∑

n∈A\B
e∗
n(x)e	(n) +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥∥
�

∥∥∥∥∥∥
∑

n∈B\A
e∗
n(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥∥
=
∥∥∥∥∥∑

n/∈A

e∗
n(x)en

∥∥∥∥∥ =
∥∥∥x − Gm(x)

∥∥∥. �

3. Property (A)

Let (en)
�
n=1 be a basis of a Banach space X. Given any x = ∑�

n=1 e∗
n(x)en ∈ X, the support

of x, denoted supp x, consists of those n such that e∗
n(x) �= 0. Let M(x) denote the subset of
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supp x, where the coordinates of x (in absolute value) are the largest. Obviously the cardinality
of M(x) is finite for all x ∈ X. We will say that a 1 − 1 map 	 : supp x → {1, 2, . . . , �} is a
greedy permutation for x if 	(j) = j for all j ∈ supp x\M(x) and if j ∈ M(x) then, either
	(j) = j or 	(j) ∈ N\supp x. That is, a greedy permutation of x puts those coefficients of x

whose absolute value is the largest (or some of them) in “gaps” of the support of x, if there are
any. If supp x �= N, we will put M∗

	(x) = {j ∈ M(x) : 	(j) �= j}. �G(x) will denote the set of
all greedy permutations of x.

Definition 3.1. A basis (en)
�
n=1 for a Banach space X has property (A) if for any x ∈ X we have∥∥∥∥∥∥

∑
n∈supp x

e∗
n(x)en

∥∥∥∥∥∥ =
∥∥∥∥∥∥
∑

n∈supp x

�	(n)e
∗
n(x)e	(n)

∥∥∥∥∥∥
for all 	 ∈ �G(x) and all signs (�k) with �	(n) = 1 if n /∈ M∗

	(x).

Roughly speaking, property (A) is a weak symmetry condition for largest coefficients. It al-
lows some symmetry in the norm of a vector provided its support has “gaps”. When supp x =
{1, 2, . . . , �}, then �G(x) consists only of the identity permutation and the basis does not allow
any symmetry in the norm of x. The opposite extreme case occurs when x = �

∑
n∈S ek , with

|supp x| < �; then ‖x‖ = ‖�∑k∈P ek‖ for any P ⊂ {1, 2, . . . , �} of cardinality |supp x|. In
particular, if a basis (en)

�
n=1 satisfies property (A) then it is 1-democratic. In fact, we have:

Proposition 3.2. Let (en)
∞
n=1 be a basis of a Banach space X. If (en)

∞
n=1 has property (A) then

(en)
∞
n=1 is 1-superdemocratic.

Proof. Given m ∈ N, let A and B be any two subsets of N of cardinality m. We want to prove
that for any choice of signs (�k) and (�k) we have∥∥∥∥∥∑

k∈A

�kek

∥∥∥∥∥ =
∥∥∥∥∥∑

k∈B

�kek

∥∥∥∥∥ .

But, if we pick a subset C of integers of cardinality m which is disjoint with both A and B, using
property (A) twice we obtain∥∥∥∥∥∑

k∈A

�kek

∥∥∥∥∥ =
∥∥∥∥∥∑

k∈C

ek

∥∥∥∥∥ =
∥∥∥∥∥∑

k∈B

�kek

∥∥∥∥∥ . �

Example 3.3. Let (H
(p)
n )∞n=1 be the Haar system normalized in Lp[0, 1] for 1�p < ∞: H

(p)
1 =

1 on [0, 1] and for n = 2k + s, k = 0, 1, 2, . . . , s = 1, 2, . . . , 2k ,

H
(p)
n (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k/p if t ∈ [ 2s−2
2k+1 , 2s−1

2k+1 ),

−2k/p if t ∈ [ 2s−1
2k+1 , 2s

2k+1 ),

0 otherwise.
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Since

‖H(p)
1 + 2−1/pH

(p)
3 ‖p

p �= ‖H(p)
4 + 2−1/pH

(p)
3 ‖p

p,

the Haar system does not have property (A).

Now we come to the main result of this section:

Theorem 3.4. A basis (en)
�
n=1 for a Banach spaceX is 1-greedy if and only if (en) is unconditional

with Ks = 1 and satisfies property (A).

Proof. If (en) is 1-greedy then Ks = 1 by Theorem 1.1. To see that (en) has property (A), fix
x ∈ X and assume that S = supp x is a proper subset of {1, 2, . . . , �}, otherwise there is nothing
to prove. Given 	, a greedy permutation of x, and a choice of signs � = (�k) such that �	(n) = 1
if n /∈ M∗

	(x), put x�,	 =∑n∈S �	(n)ane	(n). We want to show that ‖x‖ = ‖x�,	‖. Consider the
vector

y = x +
∑

k∈M∗
	 (x)

�	(k)ake	(k),

which results from putting as many largest coefficients of x (possibly with different signs) as
|M∗

	(x)| in gaps of the support of x. Then, on the one hand, if m = |M∗
	(x)| we have

Gm(y) =
∑

k∈M∗
	 (x)

akek.

Since (en) is 1-greedy,

‖x�,	‖ = ‖y − Gm(y)‖ = �m(y)�

∥∥∥∥∥∥y −
∑

k∈M∗
	 (x)

�	(k)ake	(k)

∥∥∥∥∥∥ = ‖x‖.

On the other hand we also have

Gm(y) =
∑

k∈M∗
	 (x)

�	(k)ake	(k),

hence

‖x‖ = ‖y − Gm(y)‖�

∥∥∥∥∥∥y −
∑

k∈M∗
	 (x)

akek

∥∥∥∥∥∥ = ‖x�,	‖.

For the converse, since Ks = 1, using Proposition 2.4, we will prove that (en) is 1-greedy by
showing that for each m ∈ N, m < �, and any x ∈ X, we have

‖x − Gm(x)‖ = min
{∥∥∥x − PB(x)

∥∥∥ : B ⊂ {1, 2, . . . , �}, |B| = m
}
.

Let � be the greedy ordering for x and A = {�(1), �(2), . . . , �(m)}. Thus, Gm(x) = ∑
n∈A

e∗
n(x)en. Suppose, first, that B is disjoint with A. Then, if we pick signs (�n)n∈A so that
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sgn(�ne
∗
�(m)(x)) = sgn e∗

n(x) for all n ∈ A, using Proposition 2.1 we obtain

∥∥∥x − PB(x)

∥∥∥ =
∥∥∥∥∥∑

n∈A

e∗
n(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥
�
∥∥∥∥∥∑

n∈A

�ne
∗
�(m)(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥ .

Now pick signs (�n)n∈B so that sgn(�ne∗
�(m)(x)) = sgn e∗

n(x) for each n ∈ B. Then property (A)
gives ∥∥∥∥∥∑

n∈A

�ne
∗
�(m)(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥ �
∥∥∥∥∥∑

n∈B

�ne
∗
�(m)(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥ ,

and using Proposition 2.1 again we get∥∥∥∥∥∑
n∈B

�ne
∗
�(m)(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥�
∥∥∥∥∥∑

n∈B

e∗
n(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥
=
∥∥∥∥∥x −

∑
n∈A

e∗
n(x)en

∥∥∥∥∥
= ‖x − Gm(x)‖.

If B ∩ A �= ∅, then

∥∥∥x − PB(x)

∥∥∥ =
∥∥∥∥∥∥
∑

n∈A\B
e∗
n(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥∥
(a)
�

∥∥∥∥∥∥
∑

n∈A\B
�ne

∗
�(m+1)(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥∥
(b)=
∥∥∥∥∥∥
∑

n∈B\A
�ne

∗
�(m+1)(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥∥
(c)
�

∥∥∥∥∥∥
∑

n∈B\A
e∗
n(x)en +

∑
n/∈A∪B

e∗
n(x)en

∥∥∥∥∥∥
=
∥∥∥∥∥∑

n/∈A

e∗
n(x)en

∥∥∥∥∥ ,

where �n = ±1 have been chosen in such a way that sgn(�ne
∗
�(m+1)(x)) = sgn e∗

n(x) for all
n ∈ A\B and we picked �n = ±1 in order to satisfy sgn(�ne∗

�(m+1)(x)) = sgn e∗
n(x) for all

n ∈ B\A. In (a) and (c) we used the fact that Ks = 1, and in (b) we used property (A). �

From Example 3.3 we immediately deduce that the Haar system (H
(p)
n )∞n=1 is not a 1-greedy

basis in Lp[0, 1], 1 < p < ∞.
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Proposition 3.5. Suppose (en)
∞
n=1 is a basis for a Banach space (X, ‖ · ‖X). For 1�p < ∞, let

Y = X ⊕p R endowed with the norm

‖(x, �)‖Y =
(
‖x‖p

X + |�|p
)1/p

, x ∈ X, � ∈ R.

Denote (yn)
∞
n=0 the natural basis in Y :

(
(0, 1), (e1, 0), (e2, 0), . . .

)
. If (yn) has property (A)

then (en) is isometrically isomorphic to the canonical �p-basis.

Proof. Pick any N ∈ N and any linear combination
∑N

n=1 �nen. Without loss of generality we
will assume that |�1|� |�2|� · · · � |�N |. Then, using the fact that (yn) has property (A), we have∥∥∥∥∥

N∑
n=1

�nen

∥∥∥∥∥
X

=
∥∥∥∥∥
(

N∑
n=1

�nen, 0

)∥∥∥∥∥
Y

=
∥∥∥∥∥�1(0, 1) +

N∑
n=2

�nen

∥∥∥∥∥
Y

=
∥∥∥∥∥
(

N∑
n=2

�nen, �1

)∥∥∥∥∥
Y

=
⎛
⎝∥∥∥∥∥

N∑
n=2

�nen

∥∥∥∥∥
p

X

+ |�1|p
⎞
⎠1/p

.

Next we would play the same trick with the norm in X of
∑N

n=2 �nen. After N steps we would
obtain∥∥∥∥∥

N∑
n=1

�nen

∥∥∥∥∥
X

=
(
|�1|p + · · · + |�N |p

)1/p

. �

The next two results can be shown in the same fashion and we omit their proof.

Proposition 3.6. Let X be a Banach space with a basis (xn)
∞
n=1 and let 1�p < ∞. Consider

the Banach space Y = X ⊕p �p with the natural basis (yn)
∞
n=1 =

(
(x1, 0), (0, e1), (x2, 0),

(0, e2), . . .
)

, where (en) denotes the unit vector basis of �p. If (yn) has property (A) then (xn) is

isometrically equivalent to (en).

Proposition 3.7. Let (X, ‖ · ‖) be a Banach space with a basis (xn)
∞
n=1. Consider the space

Y = X ⊕1 X endowed with the norm

‖(x1, x2)‖Y = ‖x1‖ + ‖x2‖.

The sequence (yn)
∞
n=1 =

(
(x1, 0), (0, x1), (x2, 0), (0, x2), . . .

)
is a basis for Y . If (yn) has

property (A) then (xn) is isometrically equivalent to the canonical �1-basis.
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4. Renorming

In this section, we give partial results in connection with the open problems in §6. Suppose that
(en) is a 1-greedy basis for a Banach space (X, ‖ · ‖). By Theorem 1.1, (en) is unconditional with
Ks = 1, and democratic with the democratic constant = 1. If we endow X with the equivalent
lattice norm, defined for x =∑∞

n=1 anen ∈ X by

‖x‖
�
= sup

�n=±1

∥∥∥∥∥
∞∑

n=1

�nanen

∥∥∥∥∥ , (5)

then (en) is unconditional in (X, ‖·‖
�
) with Ku = 1, but one could expect the democratic constant

of (en) in the new norm to increase. This is not the case and (en) remains 1-superdemocratic in
(X, ‖ · ‖

�
). Indeed, for any n ∈ N and any A ⊂ N with |A| = n, taking into account the

1-superdemocracy of (en) in (X, ‖ · ‖), we have∥∥∥∥∥∑
k∈A

�kek

∥∥∥∥∥
�

= sup
�k=±1

∥∥∥∥∥∑
k∈A

εk�kek

∥∥∥∥∥ =
∥∥∥∥∥∑

k∈A

ek

∥∥∥∥∥ ,

for any (�k)k∈A signs. Actually we will show that (en) still is 1-greedy after renorming X with
the norm in (5). In its proof we will use the following elementary lemma.

Lemma 4.1. Let (en) be an unconditional basis for a Banach space X. Then, for each x =∑∞
n=1 anen ∈ X there exists a sequence of signs (�n) (which depends on x) so that

‖x‖
�
=
∥∥∥∥∥

∞∑
n=1

�nanen

∥∥∥∥∥ .

Proof. It is easy to see that the map from the topological product space {−1, 1}N into X which
assigns to each sequence of signs (�n) the vector

∑∞
n=1 �nanen is continuous. Composing with

the norm in X gives us a continuous map from {−1, 1}N into R:

(�n) �→
∥∥∥∥∥

∞∑
n=1

�nanen

∥∥∥∥∥ .

By compactness, there is a choice of signs (�n) where this map attains its maximum. �

Proposition 4.2. Let (en) be a 1-greedy basis for the Banach space (X, ‖ · ‖). Then (en) is
(1-unconditional and) 1-greedy in (X, ‖ · ‖

�
).

Proof. Take any x =∑∞
k=1 anen ∈ X. Without loss of generality we assume that the coefficients

of x in absolute value are non-increasing (otherwise we work with the greedy ordering of x). Thus
for each m ∈ N,

‖x − Gm(x)‖
�
=
∥∥∥∥∥

∞∑
n=m+1

anen

∥∥∥∥∥
�

= sup
±1

∥∥∥∥∥
∞∑

n=m+1

±anen

∥∥∥∥∥ =
∥∥∥∥∥

∞∑
n=m+1

�nanen

∥∥∥∥∥ , (6)
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where (�n) is the sequence of signs given by the previous lemma. Put

y =
∞∑

n=1

�nanen,

where �1 = �2 = · · · = �m = 1. Then Gm(y) = ∑m
n=1 anen and, since (em) is 1-greedy in

(X, ‖ · ‖), we have

∥∥∥∥∥
∞∑

n=m+1

�nanen

∥∥∥∥∥ = ‖y − Gm(y)‖��‖·‖
m (y). (7)

Now, for each set B ⊂ N of cardinality m,

�‖·‖
m (y)�

∥∥∥∥∥y −
∑
k∈B

�kakek

∥∥∥∥∥ �
∥∥∥∥∥

∞∑
n=1

anen −
∑
k∈B

akek

∥∥∥∥∥
�

,

which implies

�‖·‖
m (y)� min

⎧⎨
⎩
∥∥∥∥∥

∞∑
n=1

anen −
∑
k∈B

akek

∥∥∥∥∥
�

: B ⊂ N, |B| = m

⎫⎬
⎭ = �

‖·‖
�

m (x). (8)

Combining (6), (7) and (8) we obtain

‖x − Gm(x)‖
�
��

‖·‖
�

m (x),

i.e., (en) is 1-greedy in (X, ‖ · ‖
�
). �

Analogously, if (en) is C-greedy in (X, ‖ · ‖) and we equivalently renorm X with the lattice
norm, then one may argue as above to show that, in fact, (en) is 1-unconditional and C-greedy in
(X, ‖ · ‖

�
).

A basic tool to analyze unconditional bases in Lp[0, 1] for 1 < p < ∞ is provided by the
following consequence of Khintchine’s inequalities.

Proposition 4.3. Let 1 < p < ∞. If (
n)
∞
n=1 is an unconditional basis for (Lp[0, 1], ‖ ·‖p) with

biorthogonal functionals (
∗
n), then the expression

|||f ||| =
⎛
⎝∫ 1

0

( ∞∑
n=1

|
∗
n(f )|2|
n(t)|2

)p/2

dt

⎞
⎠1/p

, f ∈ Lp[0, 1],

gives a norm on Lp[0, 1] which is equivalent to the standard Lp-norm.
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Hence, as a particular case of the above proposition, one obtains:

Proposition 4.4. For each 1 < p < ∞ there exists a constant C = C(p) so that

C−1

⎛
⎝∫ 1

0

( ∞∑
n=1

|an|2|H(p)
n (t)|2

)p/2

dt

⎞
⎠1/p

�
∥∥∥∥∥

∞∑
n=1

anH
(p)
n

∥∥∥∥∥
Lp

�C

⎛
⎝∫ 1

0

( ∞∑
n=1

|an|2|H(p)
n (t)|2

)p/2

dt

⎞
⎠1/p

,

for any sequence (an) ∈ c00.

Proof. Given f =∑∞
n=1 anH

(p)
n ∈ Lp[0, 1] (1 < p < ∞), put

|||f ||| =
⎛
⎝∫ 1

0

( ∞∑
n=1

|an|2|H(p)
n (t)|2

)p/2

dt

⎞
⎠1/p

(9)

and appeal to Proposition 4.3. �

Sometimes it is convenient to describe the normalized Haar basis in Lp[0, 1] as a sequence of
“layers” as follows. Let h0

0 be the constant function 1. For n�0 and 1�k�2n we define hn
k thus:

hn
k(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n/p if t ∈ [ 2k−2
2n+1 , 2k−1

2n+1 ),

−2n/p if t ∈ [ 2k−1
2n+1 , 2k

2n+1 ),

0 otherwise.

Our next result proves that Lp[0, 1] can be equivalently renormed so that some subbasis of the
Haar system is 1-unconditional and (1 + ε)-democratic for the new norm. Unfortunately we are
unable to prove it for the whole basis and cannot get rid of ε (see Problem 6.2).

Proposition 4.5. Let 1 < p < ∞. For each ε > 0 there exists an increasing sequence

(ni)
∞
i=1 of non-negative integers such that the “lacunary Haar system”

(
(h

ni

j )2ni

j=1

)∞
i=0

is

1-unconditional, (1 + ε)-democratic in (Lp[0, 1], ||| · |||) and the closed linear span of(
(h

ni

j )2ni

j=1

)∞
i=0

in (Lp[0, 1], ||| · |||) is isomorphic to (Lp[0, 1], ‖ · ‖p).

Proof. The proof relies basically on an idea that appeared in [5]. Given ε > 0, pick � ∈ N such
that

2�/p

(22�/p − 1)1/2 · 2�/p

(2� − 1)1/p
�1 + ε.

Consider the sequence (ni) defined by n0 = 0 and ni+1 = ni + � and the subbasis of the Haar
system

Sε =
(
(h

ni

j )2ni

j=1

)∞
i=0

= (h0
0, h

n1
1 , h

n1
2 , . . . , h

n1
2n1︸ ︷︷ ︸

nth
1 -layer

, h
n2
1 , h

n2
2 , . . . , h

n2
2n2︸ ︷︷ ︸

nth
2 -layer

, . . . ).
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Note that for each t ∈ [0, 1), the non-zero values of the functions |hni

k (t)|p, i = 1, 2, . . . belong
to a geometric progression of ratio 2�. If A is any finite subset of Sε, put

M(t) = max
{
ni : t ∈ supp h

ni

k , h
ni

k ∈ A
}
,

and let M(t) = −∞ if t /∈⋃
h

ni
k ∈A

h
ni

k . Thus for each t ∈ [0, 1) we see that

∑
{hni

k ∈A}
|hni

k (t)|p �2M(t)
∞∑
i=0

(
1

2�

)i

= 2�

2� − 1
· 2M(t),

hence

2M(t) � 2� − 1

2�

∑
{hni

k ∈A}
|hni

k (t)|p.

Now,

∫ 1

0

⎛
⎜⎝ ∑

{hni
k ∈A}

|hni

k (t)|2
⎞
⎟⎠

p/2

dt �
∫ 1

0
2M(t) dt

� 2� − 1

2�

∫ 1

0

∑
{hni

k ∈A}
|hni

k (t)|p dt

= 2� − 1

2� |A|.
Therefore, we obtain∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

{hni
k ∈A}

h
ni

k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ �

(
2� − 1

2�

)1/p

|A|1/p. (10)

On the other hand, for each t ∈ [0, 1) we have

∑
{hni

k ∈A}
|hni

k (t)|2 �
(

2
M(t)

p

)2 ∞∑
j=0

(
1

22�/p

)j

= 2
2M(t)

p
22�/p

22�/p − 1
.

Then,

∫ 1

0

⎛
⎜⎝ ∑

{hni
k ∈A}

|hni

k (t)|2
⎞
⎟⎠

p/2

� 2�

(22�/p − 1)p/2

∫ 1

0
2M(t) dt

� 2�

(22�/p − 1)p/2

∫ 1

0

∑
{hni

k ∈A}
|hni

k (t)|p dt

= 2�

(22�/p − 1)p/2 |A|.
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Thus we obtain∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

{hni
k ∈A}

h
ni

k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ �

2�/p

(22�/p − 1)1/2 |A|1/p. (11)

So given any other set B ⊂ Sε such that |B| = |A|, Eqs. (10) and (11) yield∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

{hnj
m ∈B}

h
nj
m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

� 2�

(22�/p − 1)p/2 |B|

� 2�

(22�/p − 1)p/2

2�

2�/p − 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

{hni
k ∈A}

h
ni

k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

�(1 + ε)p

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

{hni
k ∈A}

h
ni

k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

.

The last statement of the proposition follows from Gamlen and Gaudet’s theorem [3] and from
the equivalence of norms given by Proposition 4.4. �

5. Examples

If (en)
�
n=1 is 1-greedy, by Theorem 1.1, (en)

�
n=1 is 1-democratic and unconditional with Ks = 1.

Our first example shows that (en)
�
n=1 need not be 1-superdemocratic, and hence Proposition 3.2

fails when the space is finite-dimensional. In particular, it shows that a 1-greedy basis need not
be 1-unconditional (at least in a two-dimensional space!).

Example 5.1. Put

B =
{
(x, y) ∈ R2 : x2 + y2 �1, xy�0

}
∪
{
(x, y) ∈ R2 : |x| + |y|�1, xy�0

}
,

and let ‖ · ‖B denote the Minkowski functional of B, i.e., for each x ∈ X

‖x‖B = inf
{
t > 0 : x

t
∈ B
}
.

X = (R2, ‖ · ‖B) is a Banach space and the unit vectors e1 = (1, 0), e2 = (0, 1) are a basis
for X. It is immediate to check that ‖P{i}‖�1 for i = 1, 2, hence by Proposition 2.2, (e1, e2) is
1-greedy.

On the other hand, (e1, e2) is not 1-superdemocratic since ‖e1+e2‖ = √
2 whereas ‖e1−e2‖ =

2. Therefore, (e1, e2) cannot be 1-unconditional.

One might think, in view of Example 5.1, that a basis which is 1-greedy, 1-superdemocratic
and such that Ks = 1 would be 1-unconditional. This is not the case as the next two-dimensional
example shows.
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Example 5.2. Let

A1 = {(x, y) ∈ R2 : x2 + y2 �1, x�0, y�0, x�y},
A2 = {(x, y) ∈ R2 : x2 + y2 �1, x�0, y�0, |x|�y},
A3 = {(x, y) ∈ R2 : x2 + y2 �1, x�0, y�0, |x|� |y|},
A4 = {(x, y) ∈ R2 : x2 + y2 �1, x�0, y�0, x� |y|},

and A = A1 ∪A2 ∪A3 ∪A4. Now, take B the convex hull of A and let ‖·‖B denote the Minkowski
functional of B. (X, ‖ · ‖B) is a Banach space, of which the vectors e1 = (1, 0) and e2 = (0, 1)

are a basis. Clearly, ‖P{i}‖�1 for i = 1, 2, hence by Proposition 2.2, (e1, e2) is 1-greedy. It is
also immediate that ‖�1e1 + �2e2‖ = ‖�1e1 + �2e2‖ for any choices of signs {�i}2

i=1 and {�i}2
i=1,

therefore the basis is 1-superdemocratic. Nevertheless, (e1, e2) is not 1-unconditional since, for
instance, given any � ∈ (	

4 , 	
2 ) the vector x = (cos �, sin �) has norm = 1 whereas the vector

x ′ = (cos �, − sin �) has norm strictly bigger than 1.

By Theorem 1.1, a 1-unconditional and 1-democratic basis is greedy with greedy constant at
most 2. Can we do any better? The next example gives a basis in an infinite-dimensional Banach
space which is 1-unconditional and 1-superdemocratic but not 1-greedy.

Example 5.3. Let X be the set of all real sequences x = (x1, x2, . . . ) ∈ �2 such that

‖x‖1 =
∞∑

n=1

|xn|√
n

is finite. Taking into account (we will see below why) that the inequality

1

2

N∑
n=1

1√
n

�
√

N (12)

holds for all N ∈ N, we define on X the norm given by:

‖x‖ = max
{
‖x‖�2 ,

1
2‖x‖1

}
.

Then (X, ‖ · ‖) is a Banach space. Let en ∈ X, n = 1, 2, . . . , be the vector whose kth coordinate
is 1 if n = k and 0 otherwise. Denote by X0 the subspace of X generated by (en)

∞
n=1.

It is easy to see that (en) is a 1-unconditional basis for X0.
On the other hand, given any subset A ⊂ N, we have∥∥∥∥∥∑

k∈A

ek

∥∥∥∥∥
1

�

∥∥∥∥∥∥
|A|∑
k=1

ek

∥∥∥∥∥∥
1

=
|A|∑
k=1

1√
k
,

which implies, using (12), that∥∥∥∥∥∑
k∈A

ek

∥∥∥∥∥ =
∥∥∥∥∥∑

k∈A

ek

∥∥∥∥∥
�2

= |A|1/2,

hence (en) is 1-democratic. In fact, (en) is 1-superdemocratic.
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Let us show that (en) does not have property (A). Pick n ∈ N such that

1

2

(
1 + 1

2
+ · · · + 1

n

)
>

√
1 + 1

2
+ · · · + 1

n
. (13)

Then, ∥∥∥∥
(

1,
1√
2
, . . . ,

1√
n
, 0, . . .

)∥∥∥∥ = 1

2

(
1 + 1

2
+ · · · + 1

n

)
,

whereas∥∥∥∥
(

0,
1√
2
, . . . ,

1√
n
, 1, 0, . . .

)∥∥∥∥
= max

{
1

2

(
1

2
+ · · · + 1

n
+ 1√

n + 1

)
,

√
1 + 1

2
+ · · · + 1

n

}

�=
∥∥∥∥
(

1,
1√
2
, . . . ,

1√
n
, 0, . . .

)∥∥∥∥ .

Let us recall that a basis (en)
∞
n=1 is subsymmetric if it is unconditional and for every increasing

sequence of integers {ni}∞i=1, the subbasis (eni
)∞i=1 is equivalent to (en)

∞
n=1. The subsymmetry

constant of (en) is the smallest constant C�1 such that given any scalars (ai) ∈ c00, we have∥∥∥∥∥
∞∑
i=1

�iaieni

∥∥∥∥∥ �C

∥∥∥∥∥
∞∑
i=1

aiei

∥∥∥∥∥
for all sequences of signs (�i ) and all increasing sequences of integers {ni}∞i=1. In this case we
say that (en) is C-subsymmetric.

Since a 1-subsymmetric basis (en) is 1-unconditional and 1-democratic, by Theorem 1.1 it
follows that (en) is greedy with greedy constant �2.

The following example, in combination with Theorem 3.4, shows that a 1-subsymmetric basis
need not be 1-greedy. It is interesting to point out here that this was precisely the first counterex-
ample that proved that a subsymmetric basis need not be symmetric (see [4]).

Example 5.4. Let (X, ‖ · ‖) be the Banach space of all sequences of scalars x = (x1, x2, . . . ) for
which

‖x‖ = sup
∞∑
i=1

|xni
|√

i
< ∞,

the supremum being taken over all increasing sequences of integers {ni}∞i=1.
The unit vectors (ei) form a 1-subsymmetric basis of X, but (ei) fails to be 1-greedy because

it does not have property (A). Indeed, take x = (1, 1√
2
, 0, 0 · · ·) and, for instance, the greedy

permutation of x given by 	(1) = 3, 	(2) = 2. Then, ‖(1, 1√
2
, 0, 0 · · ·)‖ = 1 + 1

2 whereas

‖(0, 1√
2
, 1, 0 · · ·)‖ = √

2.

Example 5.5 (Greedy does not imply subsymmetric). It was proved in [8] that for 1 < p < ∞,
(H

(p)
n )∞n=1 is a greedy basis in Lp[0, 1] with a greedy constant strictly bigger than 1 (unless
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for p = 2 that the greedy constant is = 1). Clearly (H
(p)
n )∞n=1 is not subsymmetric since if we

consider nk = 2k+1 − 1, k = 1, 2, . . . , then the subbasis (H
(p)
nk

)∞k=1 is isometrically isomorphic
to �p, which is not isomorphic to Lp[0, 1].

Now we shall present two examples which show that a 1-greedy basis need not be 1-symmetric.
The first one, essentially due to the referee, is a nice an simple way to define a norm ||| · ||| on c0
equivalent to the standard one, starting with a two-dimensional norm, so that the canonical basis
(en)

∞
n=1 is 1-greedy but not 1-symmetric in the new norm. Unfortunately, though, the sequence

(en)n�2 is 1-symmetric with respect to ||| · |||!

Example 5.6. Consider the following two-dimensional norm:

‖(x, y)‖ = max
{
|x|, |y|, 5

6 |x| + 1
3 |y|

}
.

Now endow c0 with the norm

|||(an)
∞
n=1||| = max

{
sup

1� i<j

‖(ai, aj )‖, sup
2� i<j

‖(aj , ai)‖
}

.

It is immediate to see that ||| · ||| is equivalent to ‖(an)
∞
n=1‖∞ = supn |an|. One can also readily

check that the standard unit vector basis of (c0, ||| · |||) is 1-unconditional and has property (A),
hence it is 1-greedy by Theorem 3.4. But it cannot be 1-symmetric since

|||( 3
4 , 1

2 , 0, 0, . . . )||| = 19
24

whereas

|||( 1
2 , 3

4 , 0, 0, . . . )||| = 3
4 .

The other example is more involved and finite-dimensional in nature. It gives for each n ∈ N an
n-dimensional Banach space (very close to a Hilbert space) with a 1-greedy basis whose symmetry
constant approaches 1 as n tends to ∞. We are still unable to find a sequence (Xn)

∞
n=1 of spaces

with dimXn = n, so that each Xn has a 1-greedy basis whose symmetry constant goes to ∞ as n

increases.

Example 5.7. We are going to construct the unit ball of an n-dimensional Banach space as
follows. For each i = 1, 2, . . . , n, let Ei denote the Euclidean unit ball in the hyperplane Hi =
{x = (x1, . . . , xn) ∈ Rn : xi = 0}, i.e.,

Ei =

⎧⎪⎨
⎪⎩x = (x1, . . . , xn) ∈ Rn : xi = 0 and ‖x‖2 =

⎛
⎝ n∑

j=1

|xj |2
⎞
⎠1/2

�1

⎫⎪⎬
⎪⎭ ,

and let E be the Euclidean unit ball in Rn. We define the set A to be

A =
⎧⎨
⎩a = (x1, . . . , xn) ∈ Rn : x1 �x2 � · · · �xn �0 and

n∑
j=1

|xj |2 �1

⎫⎬
⎭ .
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Now, for each different choice of signs �(j) = (�(j)
1 , . . . , �(j)

n ), j = 1, . . . , 2n, put

Aj =
{
a = (�(j)

1 x1, . . . , �(j)
n xn) : (xi)

n
i=1 ∈ A

}
.

Let us observe that all of the sets Ei’s and Aj ’s are convex. Finally, put

S =
(

n⋃
i=1

Ei

)
∪
⎛
⎝ 2n⋃

j=1

Aj

⎞
⎠ .

Let

B = co(S),

the convex hull of S, and let ‖ · ‖B denote the Minkowski functional of B. X = (Rn, ‖ · ‖B) is
a Banach space. We will prove that the unit vector basis (ei)

n
i=1 of X is 1-greedy but it is not

1-symmetric. First we make a few geometric remarks that we will be using in the sequel. Note
that B consists of all sums

∑2n

j=1 �j aj + ∑n
i=1 �ibi such that aj ∈ Aj for j = 1, . . . , 2n,

bi ∈ Ei for i = 1, . . . , n and �1, . . . , �2n , �1, . . . , �n are non-negative real numbers satisfying∑2n

j=1 �j +∑n
i=1 �i �1. It then follows that for x ∈ Rn

‖x‖B = inf

⎧⎨
⎩

2n∑
j=1

�j +
n∑

i=1

�i : �j �0, �i �0 and x =
2n∑

j=1

�j aj +
n∑

i=1

�ibi

⎫⎬
⎭ . (14)

Moreover, it is an easy consequence of the compactness of the sets Aj and Ei that this infimum
is attained.

Let us see that (ek)
n
k=1 is 1-unconditional. Given � = (�k)nk=1, where �k = ±1, let T� be the

map
∑n

k=1 xkek → ∑n
k=1 �kxkek from X to X. Each such map T� is linear. We must prove that

sup� ‖T�‖�1. Since B = co(S), it suffices to show that T�(S) ⊂ S for each �. But if x ∈ S, then
either x ∈ Ei for some i, in which case T�(x) ∈ Ei ⊂ S, or x ∈ Aj for some 1�j �2n, in which
case T�(x) ∈ Aj ′ ⊂ S.

To check that (ek)
n
k=1 has property (A), let us pick x = (x1, . . . , xn) a vector of the unit ball

of X so that at least one of its coordinates is zero (otherwise there is nothing to prove). That is,
x belongs to the intersection of B with at least one hyperplane Hi . Since S ⊂ E , it follows that
B, the convex hull of S, is also contained in E , hence B ∩ Hi ⊂ E ∩ Hi = Ei . We conclude that
B ∩ Hi = Ei . We will prove that if x ∈ Ei then ‖x‖2 = ‖x‖B. It may be assumed that ‖x‖2 = 1.
Taking into account the expression of ‖ · ‖B given in (14) and the fact that x ∈ Ei , we deduce that
‖x‖B �1. Suppose that ‖x‖B < 1. Pick a representation of x,

x =
2n∑

j=1

�̄j āj +
n∑

i=1

�̄i b̄i

such that �̄j �0, �̄i �0, āj ∈ Aj , b̄i ∈ Ei and

‖x‖B =
2n∑

j=1

�̄j +
n∑

i=1

�̄i .
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Hence we would have

1 = ‖x‖2 =
∥∥∥∥∥∥

2n∑
j=1

�̄j āj +
n∑

i=1

�̄i b̄i

∥∥∥∥∥∥
�

2n∑
j=1

�̄j‖āj‖2 +
n∑

i=1

�̄i‖b̄i‖2

�
2n∑

j=1

�̄j +
n∑

i=1

�̄i

< 1.

Therefore, to evaluate the ‖ · ‖B-norm of an element of Ei we can use its ‖ · ‖2-norm. Now, if 	
is a greedy permutation of x, the vector x	 = (x	(1), . . . , x	(n)) belongs to Ek for some 1�k�n

and

‖x	‖B = ‖x	‖2 = ‖x‖2 = ‖x‖B.

By Theorem 3.4, (ek)
n
k=1 is 1-greedy.

It remains to be proved that (ek)
n
k=1 is not 1-symmetric. We will see that there exist vectors x =

(x1, . . . , xn) ∈ X with ‖x‖B = 1 such that for some permutation 	, the norm of (x	(1), . . . , x	(n))

is strictly bigger than 1. Let us take x = (x1, . . . , xn) ∈ A such that x1 > x2 > · · · > xn > 0
and ‖x‖2 = 1. Since A ⊂ B ⊂ E , it follows that

1 = ‖x‖2 �‖x‖B �1,

hence ‖x‖B = 1.
Now consider x′ = (xn, xn−1, . . . , x2, x1). Obviously, ‖x′‖2 = 1. We aim to show that ‖x‖B >

1. Suppose the contrary. Then, since ‖x′‖B cannot be strictly less than 1, the only option is
‖x′‖B = 1.

We choose a representation of x′ where its ‖ · ‖B-norm is attained,

x′ =
2n∑

j=1

�̄j āj +
n∑

i=1

�̄i b̄i and 1 =
2n∑

j=1

�̄j +
n∑

i=1

�̄i .

Clearly, in the above representation it must be ‖āj‖2 = 1 = ‖b̄i‖2 for all j = 1, . . . , 2n and
all i = 1, . . . , n. This way we have a vector in the Euclidean unit sphere of Rn written down
as a convex combination of vectors in the Euclidean unit sphere of Rn as well. Using the strict
convexity (or rotundity) of E we infer that āj = b̄i = x′, which is impossible by our choice of
x′.

Let us note that as n grows larger the basis becomes more and more symmetric. Let x =
(x1, . . . , xn) ∈ X such that ‖x‖B = 1. At least one of the coordinates of x, say xn, is � 1√

n
.

Then, given any permutation 	 : {1, 2, . . . , n} → {1, 2, . . . , n}, we have

‖x1e	(1) + · · · + xne	(n)‖B �‖x1e	(1) + · · · + xn−1e	(n−1)‖B + ‖xne	(n)‖B

�‖x1e1 + · · · + xn−1en−1‖B + 1√
n

�‖x‖B + 1√
n

= 1 + 1√
n
.
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6. Final remarks

It is clear that our work leaves a lot or open questions. Clearly, the most important is:

Problem 6.1. Does there exist a 1-greedy basis (en)
∞
n=1 which is not symmetric in an infinite-

dimensional Banach space X?

The natural approach to tackle this question is to use renorming. So, in particular one may
ask: suppose (en)

∞
n=1 is a greedy basis in a Banach space X. Does there exist an equivalent norm

||| · ||| on X so that (en)
∞
n=1 is 1-greedy in (X, ||| · |||)? Interestingly enough, it is not the case.

It was recently shown by T. Schlumprecht (unpublished) that neither Johnson–Figiel–Tsirelson
type space (see [2, Section 2]) nor H1 can be renormed so that their natural bases are 1-greedy.

However, the following are still open:

Problem 6.2. Can we equivalently renorm (Lp[0, 1], ‖·‖p) (1 < p < ∞) so that the normalized
Haar system is 1-greedy in the new norm?

Problem 6.3. Suppose (en)
∞
n=1 is a (super)democratic basis in a Banach space X. Does there

exist an equivalent norm ||| · ||| on X so that (en)
∞
n=1 is 1-(super)democratic in (X, ||| · |||)?

A different problem is suggested by Theorem 1.1, Proposition 4.2, and Examples 5.1 and 5.2:

Problem 6.4. Does 1-greedy imply 1-unconditional in an infinite-dimensional Banach space?
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